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Abstract

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as alpha-linolenic, eicosapentaenoic, 
and docosahexaenoic acids mostly exist in marine-derived foods, and have shown beneficial 
effects for hypertriglyceridemia, endothelial function, inflammation, and oxidative stress. 
Studies suggest that n-3 PUFAs can regulate the activity of NF-κB, Nrf2, SREBP-1c, and 
PPARα, which are linked to inflammations, ROS homeostasis, and lipid metabolism. Several 
epidemiological trials and physiological studies indicated protective effect of n-3 PUFAs 
against various common diseases such as cardiovascular diseases, diabetes mellitus, and 
non-alcoholic fatty liver disease. This review summarises the findings of many such studies 
highlighting the beneficial effects of n-3 PUFAs.
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Introduction

 Polyunsaturated fatty acids (PUFAs) carry 
several double bonds. As the name suggests, the first 
double-bond in omega-3 polyunsaturated fatty acids 
(n-3 PUFAs) is at the third carbon from the methyl 
end. Alpha-linolenic (ALA), eicosapentaenoic acid 
(EPA), and docosahexaenoic acid (DHA) are the 
three major n-3 PUFAs (Calder, 2012). ALA is 
mainly produced in plants such as flaxseed, canola, 
and butternut, while EPA and DHA are mostly 
produced in marine animals such as fish, algae, and 
seals. Humans cannot endogenously synthesise n-3 
PUFAs, and therefore mainly depend on diet sources. 
In humans, ALA can be biochemically converted into 
EPA and DHA; however, the conversion rate is very 
poor (ALA to EPA: 0.2 - 8%; ALA to DHA: 0 - 4%) 
(Mozaffarian and Wu, 2011). Due to this, marine food 
has emerged as an important direct source of EPA and 
DHA. Additionally, the fish oil in the form of ethyl 
esters (EEs) or acylglycerols is a popular commercial-
ly available n-3 PUFA supplement. Likewise, other 
marine-sourced oils, such as algal, fungal, and krill 
oils have been commercially accepted for their rich 
n-3 PUFA content (Shahidi and Ambigaipalan, 2018).
 Various in vitro, animal, and clinical studies 
have shown antioxidant, anti-inflammatory, and 
cardiovascular-regulatory functions of n-3 PUFAs 
(Mozaffarian and Wu, 2011). Accordingly, n-3 
PUFAs are conceived as healthy fats. In 2007, the 
American Dietetic Association (ADA) and Dietitians 

of Canada (DC) declared that the basal n-3 PUFA 
requirement of 500 mg/day in adults is equivalent to 8 
oz. of fish per week (Kris-Etherton et al., 2007). In 
2013, the DC again emphasised at least twice per 
week consumption of fish diet approximately 
provides 0.3 - 0.45 g n-3 PUFAs each day (Shahidi 
and Ambigaipalan, 2018).
 Given the numerous physiological functions 
of n-3 PUFAs, they have been extensively studied for 
their protective effect against various diseases (Innes 
and Calder, 2020). This review thus aims to briefly 
summarise the beneficial effects of n-3 PUFAs with 
potential underlying mechanisms in several diseases.

n-3 PUFAs alleviate potential disease risk
 Dietary triglycerides (TGs) enter the blood 
circulation from the small intestine as chylomicrons, 
and get hydrolysed by lipoprotein lipase (LPL) into 
free fatty acids (FFA), which are then consumed as 
the energy source by various cells such as muscle 
cells, while the excess TG is stored in the liver. In 
case of increased energy demand, hepatic TG 
combined with apolipoprotein B-100, also known as 
very-low-density lipoprotein (VLDL), is secreted 
back into the blood, where LPL can transform it into 
LDL for muscle cells (Alves-Bezerra and Cohen, 
2017). High TG level, mostly a result of unhealthy 
lifestyle and diet, can cause endothelial dysfunction, 
which leads to decreased flow-mediated dilatation of 
blood vessels which could progress to other disorders 
(Reiner, 2017). Therefore, a high TG level is 

1Guangdong Yue-s Special Nutrition Technology Co., Ltd., Foshan, 528000, Guangdong, China
2School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 

510641, Guangdong, China

1Jia, G., 1Qiong, Z. and 1,2*Yong-Hua, W.

Health effects of omega-3 polyunsaturated fatty acids in common diseases
Review

DOI:
https://doi.org/10.47836/ifrj.28.6.01



1099 Jia, G., et al./IFRJ 28(6) : 1098 - 1108

considered a serious health risk factor. In 2016, 
European data concluded that individuals with high 
TG level of 6.6 mmol/L (580 mg/dL), when 
compared with individuals with healthy TG level of 
0.8 mmol/L (70 mg/dL), have multiple fold higher 
risk of myocardial infarction (5.1-fold), ischemic 
heart disease (3.2-fold), ischemic stroke (3.2-fold), 
and all-cause mortality (2.2-fold) (Nordestgaard, 
2016). Moreover, the oxidised TG-LDL triggers the 
secretion of inflammatory cytokines by macrophages 
which initiate a series of innate and adaptive immune 
responses (Rhoads and Major, 2018). Notably, 
several high-TG-level-induced diseases also involve 
oxidative stress, which can further aggravate the 
disease progression (Peverill et al., 2014). Many 
studies reported that the beneficial effect of n-3 
PUFAs can contest these negative factors, including 
TG accumulation, inflammatory response, and 
oxidative stress. Next, we summarise these related 
findings.

Hyperlipidaemia
 Hyperlipidaemia (TG level ≥ 1.7 mmol/L or 
≥ 150 mg/dL) is often associated with secondary 
disorders such as cardiovascular disease (CD) and/or 
type 2 diabetes mellitus (T2DM). Approximately 
25% of the US adult population is hyperlipidemic, 
while severe hyperlipidaemia (≥ 5.6 mmol/L or ≥ 500 
mg/dL) is a well-established initiation factor for 
secondary diseases (Toth, 2016). Several studies 
showed that n-3 PUFAs can lower the TG level in 
hyperlipidemic individuals. Zeman et al. (2006) 
showed that hyperlipidemic individuals who 
received n-3 PUFAs for three months showed a 
significant decrease in the plasma TG level than the 
individuals of the control group. Similarly, Zhu et al. 
(2008) showed a remarkable decrease of plasma TG 
level among hyperlipidemic participants after 
24-week administration of n-3 PUFAs. Chan et al. 
(2016) also showed similar results. Besides, a study 
of 176 hyperlipidemic subjects, which were 
randomly assigned into the placebo-controlled, 1, 2, 
and 3 g n-3 PUFAs treatment groups, showed a 

dose-dependent decrease in plasma TG level in a 
2-month follow-up study (Oh et al., 2014).
 n-3 PUFAs can lower the plasma TG level 
via three major pathways: (1) n-3 PUFA supplemen-
tation inhibits the activity of sterol receptor 
element-binding protein-1c (SREBP-1c), which is an 
activator of two hepatic TG synthesis enzymes, 
namely the diacylglycerol acetyl-transferase 
(DGAT) and phosphatidic acid phosphohydrolase 
(PA). Lowering SREBP-1c activity reduces TG 
production, and secretion of VLDL (Nakamura et al., 
2004; Harris and Bulchandani, 2006); (2) n-3 PUFAs 
can upregulate β-oxidation of the fatty acid substrates 
of hepatic TG synthesis (Pirillo and Catapano, 2015) 
via interaction with peroxisome proliferator-activat-
ed receptor-α (PPARα), which is a key regulatory 
transcription factor for β-oxidation of fatty acids in 
mitochondria and peroxisome (Nakamura et al., 
2004), eventually, the lack of essential substrates 
suppresses the hepatic TG synthesis (Shearer et al., 
2012); and (3) n-3 PUFAs accelerate hepatic TG 
clearance by inducing lipolysis via insulin-promoted 
lipoprotein lipase (LPL) (Park and Harris, 2003). 
Though the pathways involved in n-3 PUFAs-medi-
ated lowering of TG are well-known, the mechanism 
of n-3 PUFA's interaction with the related enzymes is 
not clear (Table 1).

Inflammatory response
 A study showed that the levels of 
inflammatory cytokines, including IL-6, IL-10, and 
TNF-α are positively related to TG level (Gonzalez et 
al., 2018). Since n-3 PUFAs can reduce TG level, an 
association between n-3 PUFAs and inflammatory 
response was explored. De Caterina and Libby 
(1996) showed that n-3 PUFAs supplementation 
significantly reduced the IL-1α-induced levels of 
IL-6 and IL-8 in human vein endothelial cells, thus 
suppressing inflammatory response from IL-1α. 
Another study showed that n-3 PUFA pre-treatment 
dramatically reduced the LPS-induced level of IL-10 
in RAW 264.7 cells (Babcock et al., 2002). Recently, 
a study suggested that n-3 PUFAs can remarkably 

Pathway Effect 

Inhibiting the enzymes of TG synthesis by 
downregulating the activity of SREBP-1c Suppressing TG synthesis 

Enhancing β-oxidation of fatty acids by upregulating the 
activity of PPARα 

Reducing the substrates for 
TG synthesis 

Promoting the action of LPL Increasing TG clearance 

 

Table 1. The TG-lowering mechanisms of n-3 PUFAs. 
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downregulate the gene expression of inflammatory 
cytokines IL-1β and TNF-α in THP-1 macrophages 
(Allam-Ndoul et al., 2016). Similarly, a rat study 
showed that high-fat diet-induced levels of TNF-α 
and IL-1β were significantly alleviated after 
treatment with n-3 PUFAs (Breetha and Ramaprasad, 
2018). In the apical periodontitis (AP) rat model too, 
n-3 PUFAs treatment led to a decrease of 
inflammatory cytokines TNF-α, IL-6, IL-1β, and 
IL-17 (Azuma et al., 2018). Moreover, a clinical trial 
on 324 obese subjects aged 20 to 40 indicated that 
n-3 PUFA supplementation for 8-week alleviated 
inflammatory response by downregulating CRP and 
IL-6 (Ramel et al., 2010). 
 The inflammatory response involves the 
activation of various transcription factors, including 
NF-κB, which plays an important role in many 
inflammatory signalling pathways. NF-κB regulates 
some inflammatory cytokines (IL-1, IL-2, IL-6, 
IL-12, TNF-α, and etc.), chemokines (IL-8, MIP-1α, 
MCP1, and etc.), adhesion molecules (ICAM, 
VCAM, E-selectin, and etc.), and inducible effector 
enzymes (iNOS and COX-2) (Ghosh and Karin, 
2002). In the inactivated state, NF-κB dimer remains 
bound to inhibitor protein IκB in the cytoplasm; 
however, when cell is exposed to stress condition, the 
inhibitor IκB is phosphorylated, thus releasing NF-κ
B. The activated NF-κB protein is then translocated 
into the nucleus to promote the expression of 
inflammatory proteins (Perkins, 2007).
 Lo et al. (1999) showed that n-3 PUFA 
supplementation significantly inhibited the 
LPS-induced expression of TNF-α and NF-κB in 
RAW 264.7 cells. Novak et al. (2003) showed that 
n-3 PUFAs promoted the inactivation of NF-κB by 
reducing the phosphorylation of IκB, which in turn 
reduced the LPS-induced level of TNF-α in RAW 
264.7 cells. In LPS-exposed human monocytic 
THP-1 cells too, n-3 PUFAs treatment inhibited the 
nuclear translocation of NF-κB by suppressing the 
degradation of IκB, which in turn reduced the 
LPS-induced level of TNF-α (Zhao et al., 2004). 
Similar observations were also made in animal 
models. Hudert et al. (2006) suggested that enhanced 
levels of n-3 PUFAs downregulated the activity of 
NF-κB, thus reducing the generation of TNF-α and 
IL-1β in the mice colitis model. Another study in the 
rat colitis model showed that n-3 PUFAs may 
alleviate inflammatory response via inhibition of 
NF-κB which suppresses the activity of inflammato-
ry cells (Triantafyllidis et al., 2015). In the hepatic 
ischemia/reperfusion (I/R)-injury rat model, the 
hyperactivated NF-κB and increased level of TNF-α 
and IL-1β were both reversed by n-3 PUFAs via 

enhanced stability of IκB (Zuniga et al., 2011). In the 
testicular I/R-injury rat model too, n-3 PUFAs could 
attenuate inflammatory response by regulating the 
activity of NF-κB (Qi et al., 2017). A human clinical 
trial, involving the patients with sickle cell disease 
(SCD), showed that 1-year intervention with n-3 
PUFAs downregulated the level of inflammatory 
cytokines and NF-κB in the patients as compared to 
the control group (Daak et al., 2015). Overall, these 
findings illustrate that n-3 PUFA-mediated 
regulation of inflammatory response depends on the I
κB-mediated inhibition of NF-κB.

Oxidative stress
 Intracellular metabolism generates reactive 
oxygen species (ROS) including superoxide, 
hydroxyl radical, and singlet oxygen which are 
highly unstable and reactive molecules, and can 
impair the cellular components such as proteins, 
lipids, and nucleic acids. Therefore, intracellular 
antioxidant enzymes such as superoxide dismutase 
(SOD), glutathione peroxidase (GPx), and catalase 
(CAT) eliminate ROS and function as preventative 
measures. An imbalance of ROS production and 
antioxidant enzymes, named oxidative stress, can 
damage cellular function, thus causing cell death 
(Zhang et al., 2016). Intracellular ROS can be 
upregulated by inflammatory cytokines such as 
TNF-α and IL-1β (Clauzure et al., 2014; Roberge et 
al., 2014). Also, ROS can trigger the activation of 
NF-κB by inducing phosphorylation and/or 
degradation of IκB (Zhang et al., 2016). Upregulated 
inflammatory cytokines promote oxidative stress, 
which further aggravates the inflammatory reaction 
via the NF-κB pathway.
 n-3 PUFA supplementation can reduce the 
level of ROS inducing inflammatory cytokines, thus 
showing a kind of antioxidant effect. Che et al. 
(2018) showed that n-3 PUFAs significantly 
enhanced the level of SOD to protect rat 
pheochromocytoma (P12) cells from oxidative 
damage. Under oxidative stress, cardiomyocytes 
(H9c2) cells showed an increased level of MDA (an 
end-product of oxidative damage), while the levels of 
antioxidant enzymes SOD, GPx, and CAT decreased. 
n-3 PUFA treatment also effectively ameliorated the 
negative effect of oxidative stress in H9c2 cells 
(Varghese et al., 2017). In ESC-derived cardiac 
lineage cells, pre-treatment with n-3 PUFAs 
dramatically inhibited the H2O2-induced oxidative 
stress (Shabani et al., 2019). The antioxidant effect of 
n-3 PUFAs has also been verified in a human clinical 
trial. Mas et al. (2010) showed that overweight 
participants who received n-3 PUFAs 4 gm/day for 
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six weeks exhibited a remarkable decrease in plasma 
F2-isoprostane (a marker of oxidative damage) level, 
as compared to those who received olive oil. A 
randomised controlled trial of 105 overweight 
subjects showed that as compared to the control 
group, the n-3 PUFA treatment group had a lower 
level of F2-isoprostane during the 4-month follow-up 
period (Kiecolt-Glaser et al., 2013). Recently, 
another study in type 2 diabetic patients suggested 
that MDA and F2-isoprostane levels were 
remarkably reduced after administration with n-3 
PUFAs for two weeks (Vericel et al., 2015).
 Although the above studies demonstrated 
that n-3 PUFAs can attenuate oxidative 
stress-induced damage, the mechanism remains 
unclear. Since mitochondria and NADPH oxidases 
are the main sources of ROS, mitochondrial 
dysfunction is considered the main causative factor 
of oxidative stress. Emerging evidence indicates that 
inflammatory response is a result of mitochondrial 
abnormality which aggravates intracellular ROS 
levels (Dan Dunn et al., 2015; Angelova and 
Abramov, 2018). A study showed that n-3 PUFAs 
can effectively ameliorate oxidative damage and 
mitochondrial dysfunction both in vivo and in vitro 
(Zhang et al., 2018a). n-3 PUFAs could improve 
oxidative damage by inhibiting the activity of 
mitochondrial respiratory chain enzymes in rats' 
brain tissue under oxidative stress (Carvalho-Silva et 
al., 2019). Nuclear factor E2-related factor 2 (Nrf2) 
is a transcription factor that regulates the expression 
of various antioxidant enzymes including haem 
oxygenase 1 (HO-1). Under normal conditions, Nrf2 
is silenced by Keap1 (Kelch-like ECH-associated 
protein 1), but under oxidative stress, it gets released 

from Keap1 for nuclear translocation, where it 
upregulates the transcription of antioxidant enzymes 
(Tonelli et al., 2018). Zhang et al. (2014) suggested 
that protective effects of n-3 PUFAs were in part due 
to the activation of Nrf2 in the brain injury mouse 
model. In another study, hepatic injury or a high-fat 
diet significantly downregulated Nrf2/HO-1 in mice, 
whereas n-3 PUFA treatment dramatically alleviated 
hepatic injury by enhancing the Nrf2/OH-1 activity 
(Gonzalez et al., 2018). Similarly, Yang et al. (2013) 
showed that n-3 PUFAs enhanced nuclear 
translocation of Nrf2, thus promoting the latter’s 
activity. All these findings suggest that n-3 PUFAs 
show antioxidant effect via two major pathways: (1) 
by reducing ROS production from mitochondrial 
dysfunction, and (2) by eliminating the redundant 
ROS by Nrf2 activation (Figure 1).

Protective effect of n-3 PUFAs
 Several common diseases of the modern 
world have emerged as serious health issues. In 2016, 
about 121.5 million young adults (≥ 20 years) had 
more than one type of cardiovascular disease (CVD), 
and approximately 17.6 million deaths were 
attributed to CVD worldwide. DM is another 
prevalent disease. From 2013 to 2016, about 9.8% of 
US adults (≈ 26 million) were diagnosed with DM, 
costing ~327 billion dollars to patients in 2017 
(Benjamin et al., 2019). Similarly, non-alcoholic 
fatty liver disease (NAFLD) is also on a rising 
trajectory affecting around 25.24% of the global 
population in 2016 (Younossi et al., 2016). High TG 
level, inflammation, and oxidative stress are general 
clinical characteristics of these disorders. High TG 
level is positively linked to endothelial dysfunction, 

Figure 1. An unhealthy diet and lifestyle-induced high TG level can promote a series of 
intracellular negative reactions, while n-3 PUFA supplementation effectively reduces 
the enhanced TG level, and alleviates oxidative damage by promoting Nrf2 activation.
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an important contributor to cardiovascular events, 
which is further aggravated by inflammation and 
oxidative stress (Steven et al., 2019). Similarly, high 
TG level can trigger DM by impairing insulin 
synthesis due to TG deposition-induced abnormality 
of insulin β-cells (Raz et al., 2005). Kozakova et al. 
(2019) found that as compared to healthy individuals, 
type 2 diabetes (T2D) patients exhibited higher 
plasm levels of IL-6 and IL-8. Notably, NAFLD is 
also regarded as a consequence of excessive TG 
deposition in the liver, which can further deteriorate 
to non-alcoholic steatohepatitis (NASH). After a 
series of inflammatory events and oxidative 
damages, NASH can finally develop into hepatic 
fibrosis (Peverill et al., 2014). Overall, these findings 
highlight that common lifestyle diseases are 
aggravated by TG levels, which can be countered 
with n-3 PUFA supplementation.

Cardiovascular disease (CVD)
 In the 1970s, some Danish physicians found 
that the risk of coronary heart disease (CHD) among 
Greenland Eskimos was significantly lower than 
those who lived in Denmark. They observed that n-3 
PUFA-rich fish diet led to a higher concentration of 
n-3 PUFAs in Eskimos blood (Bang et al., 1976). 
Subsequently, more epidemiological studies were 
performed to validate this claim. In 1985, Kromhout 
et al. (1985) showed that CHD-related mortality was 
about 50% lower in those who eat fish at least 30 
g/day than those who rarely consumed fish. This was 
also supported by the American nurses’ health study 
which started in 1976 with a 16-year follow-up and 
included 84,688 healthy women nurses, aged 30 to 
55. The study showed an inverse association between 
CHD risk and fish consumption (Hu et al., 2002). 
Another 3-year follow-up study among 18,244 
healthy men (aged 45 to 64) in Shanghai, China 
suggested a significant link between fish diet and 
lower risk of fatal myocardial infarction (MI) (Yuan 
et al., 2001). The same was reported in Japan Public 
Health Centre-based (JPHC) study, which supervised 
41,578 Japanese middle-aged individuals between 
1990 and 2001. The study found a lower CVD risk 
among more fish-consuming individuals than those 
who had less fish (Iso et al., 2006).
 Apart from the above-discussed studies, 
several clinical trials also established the protective 
effect of n-3 PUFAs. In 2018, an RCT (randomised 
controlled trial) of 421,309 participants who were 
free of CVD risk showed a 10% decline of CVD 
mortality in those who consumed more fish than 
those who consumed less (Zhang et al., 2018b). 
Another RCT of 427,678 healthy UK individuals in 

2020 indicated a dramatic correlation between higher 
n-3 PUFAs intake and lower CVD events, including 
CVD-related mortality (Li et al., 2020). 
 Additionally, the beneficial effect of n-3 
PUFAs as secondary prevention measure was also 
investigated. A GISSI-Prevenzione trial of 11,323 
MI survivors for a 3.5-year follow-up study showed 
that n-3 PUFA treatment reduced CVD mortality by 
about 30% as compared to the placebo (Marchioli et 
al., 2002). A JELIS trial with a 5-year follow-up of 
patients with a history of CVD showed that statin 
supplemented with EPA reduced CVD events by 
19% than statin alone (Yokoyama et al., 2007). Most 
recently in 2019, a 4.9-year follow-up RCT of 8,179 
hypertriglyceridemia patients suggested that CVD 
events among patients treated with EPA supplemen-
tation were remarkably lower (71% in secondary 
prevention trial) than those in the placebo group 
(Bhatt et al., 2019).
 Meta-analyses of RCTs showed a significant 
preventive effect of n-3 PUFAs. A meta-analysis of 
11 RCTs, including 39,044 patients with a history of 
CVD, found that the patients who took 1.8 gm/day 
EPA/DHA exhibited a significantly lower CVD risk 
than those in the control group (Marik and Varon, 
2009). In 2013, a meta-analysis of 11 RCTs 
investigated the effect of n-3 PUFA supplementation 
(1 gm/day for at least one year), and found that as 
compared to those who took a placebo, 32% 
reduction of cardiac death, 33% reduction of sudden 
death, and 25% reduction of MI was noticed in those 
who received n-3 PUFAs (Casula et al., 2013). 
Another meta-analysis of 14 RCTs in 2014, 
including 32,656 individuals with CHD, showed a 
7% reduction in CVD events, 12% reduction in death 
from cardiac causes, 14% reduction in sudden 
cardiac death, and 8% reduction in all-cause 
mortality among patients who received n-3 PUFAs as 
compared to the control group (Wen et al., 2014). 
Recently, a 2019 meta-analysis of 13 RCTs, 
containing 127,477 participants, evaluated 
dose-dependent benefits of n-3 PUFAs in CVD 
events, and found that n-3 PUFA supplementation 
significantly lowered the CVD risk, and showed an 
inverse linear dose-response relationship in the range 
of 0 - 4,000 mg/d of n-3 PUFAs (Hu et al., 2019). 
 
Diabetes mellitus (DM)
 So far, various clinical trials have shown the 
beneficial effect of n-3 PUFAs in DM. Wang et al. 
(2003) measured the plasma fatty acid composition 
from 2,909 participants (aged 45 to 64) in a 9-year 
follow-up study, and found that n-3 PUFAs levels 
were significantly lower in diabetics than in healthy 
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participants, suggesting a possible association 
between low n-3 PUFA levels and increased risk of 
DM. In 2004, a study examined the relationship 
between diet and type 2 diabetes (T2D) prevalence in 
the Nordic countries, and showed that lower T2D 
incidence was linked to higher dietary n-3 PUFA 
content (Thorsdottir et al., 2004). In 2011, an 8 to 
9-year follow-up health study of 64,193 
Shanghainese women, who were free of T2D, CVD, 
and cancer, reported that n-3 PUFA intake was 
inversely associated with T2D risk (Villegas et al., 
2011). Similarly, a meta-analysis of 24 RCTs 
suggested a significant inverse correlation between 
n-3 PUFA intake and T2D risk in Asians, while n-3 
PUFA content was dramatically lower in T2D 
patients than in healthy population (Zheng et al., 
2012).
 A 2013 study, which was designed to 
examine the effect of n-3 PUFAs on glucose 
metabolism in elderly T2D patients for 3-month, 
showed that those with n-3 PUFA supplementation 
had a lower fasting plasm glucose (FPG) level, 
haemoglobin A1c (HbA1c), remnant like particle 
(RLP), and apolipoprotein B (apo B) as compared to 
the control individuals, thus suggesting a significant 
improvement in impaired-glucose metabolism in 
elderly T2D patients (Ogawa et al., 2013). Similarly, 
Kurt et al. (2016) showed a significant decline in 
FPG, HbA1c, and pentosidine among T2D patients 
who received n-3 PUFAs (1.2 gm/day) for 2-month. 
A 2018 meta-analysis of 5 RCTs suggested that n-3 
PUFA supplementation effectively reduced the level 
of FPG, insulin resistance (IR), and C-reactive 
protein (CRP) among patients with gestational 
diabetes, which occurs during pregnancy (Zhong and 
Wang, 2019).

Non-alcoholic fatty liver disease (NAFLD)
 The beneficial effect of n-3 PUFAs in 
NAFLD has been supported by many clinical trials. 
In 2015, an RCT of 51 paediatric patients with 
NAFLD showed that n-3 PUFA supplementation for 
six months inhibited lipid accumulation as compared 
to the placebo group (Pacifico et al., 2015). Li et al. 
(2015) showed a significant reduction of plasma 
alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) levels in NASH patients 
who received n-3 PUFAs for six months, along with 
a significant reduction in TAG, CRP, and MDA 
levels. This study clearly showed that n-3 PUFAs can 
ameliorate impaired liver, and inhibit inflammation 
in NSAH patients.
 Recently, a meta-analysis of seven RCTs 
involving 442 patients on n-3 PUFAs effect on 

NAFLD showed that TAG, TC, and LDL-C levels 
were significantly reduced in the n-3 PUFAs group 
as compared to the control group; meanwhile, 
significant reduction of ALT, AST, and GGT was 
also noticed as a secondary effect which attenuated 
fatty liver and fibrosis (He et al., 2016). Similarly, a 
meta-analysis of four RCT involving 263 children 
with NAFLD demonstrated that n-3 PUFAs inhibited 
the progression of hepatic steatosis (Chen et al., 
2018). Another meta-analysis of eight RCTs 
involving 1424 participants with NAFLD showed 
that n-3 PUFA supplementation reduced liver fat, 
and improved liver function (Yan et al., 2018). A 
2018 meta-analysis of 11 RCTs showed that 1 
gm/day supplementation of n-3 PUFAs in NAFLD 
patients resulted in 3.14 U/L, 2.43 U/L, 2.74%, and 
9.97 mg/dL decline in the levels of ALT, AST, liver 
fat, and TAG, respectively (Guo et al., 2018). 
Although many studies showed the protective ability 
of n-3 PUFAs in NAFLD patients, larger scale and 
longer follow-up studies are needed to further 
validate these results.

Conclusion

 Hypertriglyceridemia has become a 
prevalent disease due to high-fat diet and less 
exercise in the modern society. High TG level is a 
serious risk factor that enhances the incidence of 
CVD, DM, and NAFLD. In addition, high TG levels 
can promote inflammation and oxidative damage, 
which can aggravate the progression of the diseases. 
Several recent studies, including human clinical 
trials, suggest that n-3 PUFA supplementation can 
ameliorate these risks. It is speculated that n-3 
PUFAs alleviate inflammation and oxidative stress 
by downregulating the activity of NF-κB and Nrf2. 
Besides, n-3 PUFAs reduce TG level by inhibiting 
synthesis or enhancing the clearance of TG. Based on 
these findings, one can suggest that n-3 PUFA 
supplements or n-3 PUFA-rich marine-derived foods 
can have beneficial health effects, and therefore 
should be included in the daily diet.
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